Climate change impacts on soil salinity in agricultural areas
Corresponding Author
Dennis L. Corwin
USDA-ARS, U.S. Salinity Laboratory, Riverside, California, USA
Correspondence
Dennis L. Corwin, USDA-ARS, U.S. Salinity Laboratory, 450 West Big Springs Road, Riverside, CA 92507-4617, USA.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dennis L. Corwin
USDA-ARS, U.S. Salinity Laboratory, Riverside, California, USA
Correspondence
Dennis L. Corwin, USDA-ARS, U.S. Salinity Laboratory, 450 West Big Springs Road, Riverside, CA 92507-4617, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Changes in climate patterns are dramatically influencing some agricultural areas. Arid, semi-arid and coastal agricultural areas are especially vulnerable to climate change impacts on soil salinity. Inventorying and monitoring climate change impacts on salinity are crucial to evaluate the extent of the problem, to recognize trends and to formulate irrigation and crop management strategies that will maintain the agricultural productivity of these areas. Over the past three decades, Corwin and colleagues at the U.S. Salinity Laboratory (USSL) have developed proximal sensor and remote imagery methodologies for assessing soil salinity at multiple scales. The objective of this paper is to evaluate the impact climate change has had on selected agricultural areas experiencing weather pattern changes, with a focus on the use of proximal and satellite sensors to assess salinity development. Evidence presented in case studies for Californiaʼs San Joaquin Valley (SJV) and Minnesotaʼs Red River Valley (RRV) demonstrates the utility of these sensor approaches in assessing soil salinity changes due to changes in weather patterns. Agricultural areas are discussed where changes in weather patterns have increased root-zone soil salinity, particularly in areas with shallow water tables (SJV and RRV), coastal areas with seawater intrusion (e.g., Bangladesh and the Gaza Strip) and water-scarce areas potentially relying on degraded groundwater as an irrigation source (SJV and Murray-Darling River Basin). Trends in salinization due to climate change indicate that the infrastructure and protocols to monitor soil salinity from field to regional to national to global scales are needed.
Highlights
- Climate change will have a negative impact on agriculture, particularly in arid regions.
- Proximal/remote sensors are useful to assess climate change impact on soil salinity across scales.
- Salt-water intrusion, shallow water tables and degraded water reuse will increase soil salinity.
- Infrastructure and protocols to monitor soil salinity across multiple scales are needed.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Aerts, L. J., Hassan, A., Savenije, H., & Khan, M. (2000). Using GIS tools and rapid assessment techniques for determining salt intrusion: STREAM – A river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265–273.
10.1016/S1464-1909(00)00014-9 Google Scholar
- Al-Khatib, M., & Al-Najar, H. (2011). Hydro-geochemical characteristics of groundwater beneath the Gaza strip. Journal of Water Resource and Protection, 3, 341–348.
- Ashour, E. K., & Al-Najar, H. (2012). The impact of climate change and soil salinity in irrigation water demand in the Gaza strip. Journal of Water and Climate Change, 3(2), 1–7. https://doi.org/10.4172/2157-7617.1000120
- Austin, J., Zhang, L., Jones, R. N., Durack, P., Dawes, W., & Hairsine, P. (2010). Climate change impact on water and salt balances: An assessment of the impact of climate change on catchment salt and water balances in the Murray-Darling Basin, Australia. Climate Change, 100, 607–631.
- Backlund, V. L., & Hoppes, R. R. (1984). Status of soil salinity in California. California Agriculture, 38(10), 8–9.
- Beare, S. & Heaney, A. 2002. Climate change and water resources in the Murray Darling Basin, Australia: Impacts and adaptation. ABARE Conference Paper 02.11, pp. 33. Retrieved from https://econweb.ucsd.edu/~carsonvs/papers/353.pdf
- Bhuiyan, M. J. A. N., & Dutta, D. (2012). Assessing impacts of sea level rise on river salinity in the Gorai River network, Bangladesh. Estuarine, Coastal and Shelf Science, 96(1), 219–227.
- BOSTID (Board on Science and Technology for International Development). (1990). Saline agriculture salt-tolerant plants for developing countries. Washington, DC: National Academy Press.
- Brevik, E. C. (2013). The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3(3), 398–417.
10.3390/agriculture3030398 Google Scholar
- Bryan, B., & Marvanek, S. (2004). Quantifying and valuing land use change for integrated catchment management evaluation in the Murray-Darling Basin 1996/97–2000/01. Adelaide, Australia: CSIRO Land and Water.
- Cape, J. (1997). Irrigation. In F. Douglas (Ed.), Australian agriculture: The complete reference on rural industry (pp. 367–374). Melbourne, Australia: Morescope Publishing.
- Carney, K. M., Hungate, B. A., Drake, B. G., & Megonigal, J. P. (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences of the United States of America, 104, 4990–4995.
- Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60, 2–14.
- Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J. & Wehner, M. 2013. Long-term climate change: Projections, commitments and irreversibility. In: T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, … P.M. Midgley (Eds.), Climate Change 2013 - The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029–1136). Cambridge, UK; New York, NY: Cambridge University Press.
- Connor, J. D., Schwabe, K., King, D., & Kaczan, D. (2009). Imppacts of reduced water availability on lower Murray irrigation, Australia. The Australian Journal of Agricultural and Resource Economics, 53, 433–452.
- Connor, J. D., Schwabe, K., King, D., & Knapp, K. (2012). Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics, 77, 149–157.
- Corwin, D. L. (2005). Geospatial measurements of apparent soil electrical conductivity for characterizing soil spatial variability. In J. Álvarez-Benedí & R. Muñoz-Carpena (Eds.), Soil-water-solute characterization: An integrated approach (pp. 640–672). Boca Raton, FL: CRC Press.
- Corwin, D. L. (2008). Past, present, and future trends of soil electrical conductivity measurement using geophysical methods. In B. J. Allred, J. J. Daniels, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 17–44). Boca, Raton, FL: CRC Press. .
- Corwin, D. L. (2012). Field-scale monitoring of the long-term impact and sustainability of drainage water reuse on the west side of Californiaʼs San Joaquin Valley. Journal of Environmental Monitoring, 14(6), 1576–1596.
- Corwin, D. L. (2015). Use of advanced information technologies for water conservation on salt-affected soils. In T. G. Mueller & G. F. Sassenrath (Eds.), GIS applications in agriculture, volume 4: Conservation planning (pp. 119–150). Boca Raton, FL: Taylor and Francis Group.
10.1201/b18173-9 Google Scholar
- Corwin, D. L., Carrillo, M. L. K., Vaughan, P. J., Cone, D. G., & Rhoades, J. D. (1999). Evaluation of a GIS-linked model of salt loading to groundwater. Journal of Environmental Quality, 28(2), 471–480.
- Corwin, D. L., Kaffka, S. R., Hopmans, J. W., Mori, Y., Lesch, S. M., & Oster, J. D. (2003). Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma, 114, 231–259.
- Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agronomy Journal, 95, 455–471.
- Corwin, D. L., & Leach, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.
- Corwin, D. L., & Lesch, S. M. (2005b). Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Computers and Electronics in Agriculture, 46(1–3), 103–133.
- Corwin, D. L., & Lesch, S. M. (2005c). Characterizing soil spatial variability with apparent soil electrical conductivity: II. Case study. Computers and Electronics in Agriculture, 46(1–3), 135–152.
- Corwin, D. L., & Lesch, S. M. (2013). Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. Journal of Environmental and Engineering Geophysics, 18(1), 1–25.
- Corwin, D. L., & Lesch, S. M. (2014). A simplified regional-scale electromagnetic induction – Salinity calibration model using ANOCOVA modeling techniques. Geoderma, 230-231, 288–295.
- Corwin, D. L., & Lesch, S. M. (2016). Validation of the ANOCOVA model for regional-scale ECa to ECe calibration. Soil Use and Management, 33, 178–190. https://doi.org/10.1111/sum.12262
- Corwin, D. L., Lesch, S. M., Oster, J. D., & Kaffka, S. R. (2006). Monitoring management-induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131, 369–387.
- Corwin, D. L., Lesch, S. M., Oster, J. D., & Kaffka, S. R. (2008). Short-term sustainability of drainage water reuse: Spatio-temporal impacts on soil chemical properties. Journal of Environmental Quality, 37, 8–24.
- Corwin, D. L., Lesch, S. M., Shouse, P. J., Soppe, R., & Ayars, J. E. (2003). Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agronomy Journal, 95(2), 352–364.
- Corwin, D. L., & Scudiero, E. (2016). Field-scale apparent soil electrical conductivity. In S. Logsdon (Ed.), Methods of soil analysis (online) (Vol. 1, ( 1–29). Madison, WI: SSSA. https://doi.org/10.2136/methods-soil.2015.0038
10.2136/methods-soil.2015.0038 Google Scholar
- Corwin, D. L., & Scudiero, E. (2019). Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. D. L Sparks (Ed.), In Advances in agronomy (Vol. 158, pp. 1–130). Cambridge, Massachusetts: Academic Press.
- Corwin, D. L., & Yemoto, K. (2017). Salinity: Electrical conductivity and total dissolved solids. In S. Logsdon (Ed.), Methods of soil analysis (Vol. 2, ( 1–16). Madison, WI: Soil Science Society of America.
- Crabb, P. (1997). Murray Darling Basin resources. Canberra, Australia: Murray Darling Basin Commission. CSIRO Publishing.
- Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Review: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81
- Dasgupta, S., Hossain, Md.M., Huq, M. & Wheeler, D. 2014. Climate change, soil salinity, and the economics of high-yield rice production in coastal Bangladesh. Policy Research Working Paper 7140. Washington, D.C: World Bank Group, Environment and Energy Team, Development Research Group.
- Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44, 815–826.
- Derner, J. D., Johnson, H. B., Kimball, B. A., Pinter, P. J., Jr., Polley, H. W., Tischler, C. R., … Brooks, T. J. (2003). Above- and below-ground responses of C3-C4 species mixtures to elevated CO2 and soil water availability. Global Change Biology, 9, 452–460.
- DʼOdorico, P., Bhattachan, A., Davis, K. F., Ravi, S., & Runyan, C. W. (2013). Global desertification: Drivers and feedbacks. Advances in Water Resources, 51, 326–344.
- Doolittle, J. A., & Brevik, E. C. (2014). The use of electromagnetic induction techniques in soil studies. Geoderma, 223-224, 33–45.
- FAO. (2011). The state of the worldʼs land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Rome, Italy: Food and Agriculture Organization of the United Nations.
- FAO. 2013. Report of the First Meeting of the Plenary Assembly of the Global Soil Partnership (Rome, Italy; 11-12 June 2013). GSPPA-I/13/Report. Food and Agriculture Organization of the United Nations, Rome, Italy. 22 pp.
- FAO. (2016). Climate change and food security: Risks and responses. Rome, Italy: Food and Agriculture Organization of the United Nations.
- Geist, H. (2005). The causes and progression of desertification. Aldershot, Hants, UK: Ashgate Publishing Limited.
- Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., … Oskarsson, N. (2009). Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277, 213–222.
- Hanjra, M., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365–377.
- Haque, S. A. (2006). Salinity problems and crop production in coastal regions of Bangladesh. Pakistan Journal of Botany, 38(5), 1359–1365.
- Heil, K., & Schmidhalter, U. (2017). The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors, 17, 2540. https://doi.org/10.3390/s17112540
- Idso, K. E., & Idso, S. B. (1994). Plant responses to atmospheric CO2 enrichment in the face of environmental constraints – A review of the past 10 years research. Agricultural and Forest Meteorology, 69, 153–203.
- Idso, S. B., & Kimbaall, B. A. (1997). Tree growth in carbon dioxide enriched air and its implications for global carbon cycling and maximum levels of atmospheric CO2. Global Biogeochemical Cycles, 7, 537–555.
- Jarvis, A., Ramirez, J., Anderson, B., Leibing, C., & Aggarwal, P. (2010). Scenarios of climate change within the context of agriculture. In M. P. Reynolds (Ed.), Climate change and crop production (pp. 9–37). Chippenham, UK: CPI Antony Rowe.
- Johnson, C. K., Doran, J. W., Duke, H. R., Weinhold, B. J., Eskridge, K. M., & Shanahan, J. F. (2001). Field-scale electrical conductivity mapping for delineating soil condition. Soil Science Society of America Journal, 65, 1829–1837.
- Kirtman, B., Power, S.B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes, F.J., Fiore, A.M., Kimoto, M., Meehl, G.A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G.J., Vecchi, G. & Wang, H.J. 2013. Near-term climate change: Projections and predictability. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, … P.M. Midgley, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press. 953–1028. https//doi.org/10.1017/CBO9781107415324.023
- Körner, C. (2006). Plant CO2 responses: An issue of definition, time and resource supply. The New Phytologist, 172, 393–411.
- Kropff, M. J., Matthews, R. B., van Laar, H. H., & ten Berge, H. F. M. (1995). The rice model ORYZA1 and its testing. In R. B. Matthews, M. J. Kropff, D. Bachelet, & H. H. Laar (Eds.), Modeling the impact of climate change on Reice production in Asia (pp. 27–50). Wallingford, UK: CAB International.
- Lesch, S. M., Corwin, D. L., & Robinson, D. A. (2005). Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Computers and Electronics in Agriculture, 46(1–3), 351–378.
- Lesch, S. M., Rhoades, J. D., & Corwin, D. L. (2000). ESAP-95 Version 2.10R: User and Tutorial Guide. Research Rpt. 146. Riverside, CA: USDA-ARS, U.S. Salinity Laboratory.
- Lesch, S. M., Rhoades, J. D., Lund, L. J., & Corwin, D. L. (1992). Mapping soil salinity using calibrated electromagnetic measurements. Soil Science Society of America Journal, 56, 540–548.
- Lioubimtseva, L., Dronin, N., & Kirilenko, A. (2015). Grain production trends in the Russian Federation, Ukraine and Kazakhstan in the context of climate change and international trade. A. Elbehri (Ed.), In Climate change and food systems: Global assessments and implications for food security and trade, ( 211–244). Rome: FAO.
- Loáiciga, H. A., Pingel, J. T., & Garcia, E. S. (2012). Sea water intrusion by sea-level rise: Scenarios for the 21st century. Ground Water, 50, 37–47.
- Lobell, D. B. (2010). Remote sensing of soil degradation: Introduction. Journal of Environmental Quality, 39, 1–4.
- Lobell, D. B., Lesch, S. M., Corwin, D. L., Ulmer, M. G., Anderson, K. A., Potts, D. J., … Baltes, M. J. (2010). Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 39, 35–41.
- Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.
- Long, S. P., Ainsworth, E. A., Leakey, A. D. B., & Morgan, P. B. (2005). Global food security. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1463), 2011–2020.
- Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance – Current assessment. Journal of the Irrigation and Drainage Division, 103(IR2), 115–134.
10.1061/JRCEA4.0001137 Google Scholar
- Mahmood, S., Shah, M., Najneen, F., Hoque, K. S., Rahman, S., & Shamim, M. (2010). Climate change: A study on impact and peopleʼs perception (a case study on Mongla Upazila, Bagerhat District, Bangladesh). Bangladesh Research Publications Journal, 4(2), 153–164.
- Massoud, F. I. (1981). Salt Affected Soils at a Global Scale and Concepts for Control. Technical Paper. Rome, Italy: FAO Land and Water Development Division, Food and Agriculture Organization of the United Nations.
- Matthews, R. B., Horie, T., Kropff, M. J., Bachelet, D., Centeno, H. G., Shin, J. C., … Lee, M. H. (1995). A regional evaluation of the effect of future climate change on rice production in Asia. In R. B. Matthews, M. J. Kropff, D. Bachelet, & H. H. Laar (Eds.), Modeling the impact of climate change on rice production in Asia (pp. 95–139). Wallingford, UK: CAB International.
10.1007/978-3-642-85193-3_29 Google Scholar
- Meehl, G.A., Stocker, T.F., Collins, W.D., Friedliongstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. & Zhao, Z.-C. 2007. Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (Eds.), Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 747–845). Cambridge, UK; New York, NY: Cambridge University Press.
- Metternicht, G. (1998). Fuzzy classification of JERS-1 SAR data: An evaluation of its performance for soil salinity mapping. Ecological Modelling, 111, 61–74.
- Mimi, Z. A., & Jamous, S. A. (2010). Climate change and agricultural water demand: Impacts and adaptations. African Journal of Environmental Science and Technology, 4, 183–191.
- Mougenot, B., Pouget, M., & Epema, G. (1993). Remote sensing of salt affected soils. Remote Sensing Reviews, 7, 241–259.
10.1080/02757259309532180 Google Scholar
- Murray-Darling Basin Authority. 2015. Annual report 2014–2015. Retrieved from https://www.mdba.gov.au/annual-report-2014-15
- Niklaus, P. A., & Körner, C. (2004). Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecological Monographs, 74, 491–511.
- Nobi, N., & Das Gupta, A. (1997). Simulation of regional flow and salinity intrusion in an integrated stream-aquifer system in coastal region: Southwest region of Bangladesh. Ground Water, 35(5), 786–796.
- Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.
- Pang, X., & Letey, J. (1998). Development and evaluation of ENVIRO-GRO, an integrated water, salinity, and nitrogen model. Soil Science Society of America Journal, 62(5), 1418–1427.
- Patterson, L. A., Lutz, B., & Doyle, M. W. (2013). Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resources Research, 49, 7278–7291. https://doi.org/10.1002/2013WR014618
- Poorter, H., & Navas, M.-L. (2003). Plant growth and competition at elevated CO2: On winners, losers and functional groups. The New Phytologist, 157, 175–198.
- Porter, J.R., Xie, L., Challinor, A.J., Cochraane, K., Howden, S.M., Iqbal, M.M., Lobell, D.B. & Travassso, M.I. 2014. Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, … L. L. White (Eds.), Climate Change 2014: Impacts, Adaptations, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge, UK; New York, NY: Cambridge University Press.
- Qafoku, N.P. 2014. Overview of different aspects of climate change effects on soils. Richland, WA: Pacific Northwest National Laboratory. Retrieved from https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23483.pdf
- Qahman, K., Larabi, A., Quazar, D., Naji, A., & Cheng, A. H. D. (2009). Optimal extraction of groundwater in Gaza coastal aquifer. Journal of Water Resource and Protection, 4, 249–259.
10.4236/jwarp.2009.14030 Google Scholar
- Qureshi, E., Connor, J., Kirby, M., & Mainudin, M. (2007). Economic assessment of environmental flows in the Murray Basin. Australian Journal of Agricultural and Resource Economics, 51(3), 283–305.
- Rhoades, J. D. (1993). Electrical conductivity methods for measuring and mapping soil salinity. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 49, pp. 201–251). San Diego, CA: Academic Press.
- Rosa, R., Marques, A., & Nunes, M. L. (2012). Impact of climate change in Mediterranean aquaculture. Reviews in Aquaculture, 4, 163–177.
- Sarwar, M.G.M. 2005. Impacts of sea level rise on the coastal zone of Bangladesh. (Masters Programme in environmental science). Lund University, Sweden.
- Schofield, N. (2011). Climate change and its impacts – Current understanding, future direction. In D. Connell & R. Q. Grafton (Eds.), Basin futures: Water reform in the Murray-Darling Basin (pp. 81–98). Canberra, Australia: ANU E Press.
10.22459/BF.05.2011.04 Google Scholar
- Scudiero, E., Corwin, D. L., Anderson, R. G., & Skaggs, T. H. (2016). Moving forward on mapping and monitoring soil salinity at the regional-scale with remote sensing. Frontiers in Environmental Science, 4, 1–5. https://doi.org/10.3389/fenvs.2016.00065
- Scudiero, E., Corwin, D. L., Anderson, R. G., Yemoto, K., Clary, W., Wang, Z., & Skaggs, T. H. (2017). Remote sensing is a viable tool for mapping soil salinity in agricultural lands. California Agriculture, 71, 231–238.
- Scudiero, E., Corwin, D. L., & Skaggs, T. H. (2015). Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance. Remote Sensing of Environment, 169, 335–343.
- Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2014). Regional scale soil salinity evaluation using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Regional, 2-3, 82–90.
10.1016/j.geodrs.2014.10.004 Google Scholar
- Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2016). Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecological Indicators, 70, 276–284. https://doi.org/10.1016/j.ecolind.2016.06.015
- Shomar, B., Fakher, S. A., & Yahya, A. (2010). Assessment of groundwater quality in the Gaza Strip, Palestine using GIS mapping. Journal of Water Resource and Protection, 2, 93–114.
- Solomon, A. M., & Leemans, R. (1990). Climate change and landscape ecological response: Issues and analysis. In M. M. Boer & R. S. Greoot (Eds.), Landscape ecological impact of climatic change (pp. 293–316). Amsterdam, the Netherlands: IOS Press.
- Svobodová, E., Trnka, M., Dubrovský, M., Semerádová, D., Eitzinger, J., Stěpánek, P., & Zalud, Z. (2014). Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Management Science, 70(5), 708–715. https://doi.org/10.1002/ps.3622
- Szabolcs, I. (1990). Impact of climate change on soil attributes: Influence on salinization and alkalinization. In Developments in soil science (Vol. 20, pp. 61–69). Amsterdam, the Netherlands: Elsevier.
- Teh, S. Y., & Koh, H. L. (2016). Climate change and soil salinization: Impact on agriculture, water, and food security. International Journal of Agriculture, Forestry and Plantation, 2, 1–9.
- Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., … Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3–26.
- Wichelns, D., & Cone, D. (2006). A water transfer and agricultural land retirement in a drainage problem area. Irrigation and Drainage Systems, 20, 225–245.
10.1007/s10795-006-9004-0 Google Scholar
- Wu, W., Al-Shafie, W., Mhaimeed, A., Ziadat, F., Nangia, V., & Payne, W. (2014). Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4442–4452.
- Xu, C., Zeng, W., Huang, J., Wu, J., & van Leeuwen, W. J. (2016). Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sensing, 8, 42. https://doi.org/10.3390/rs8010042
- Yeo, A. (1999). Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Horticulturae, 78, 159–174.
- Zaehle, S., Friedlingstein, P., & Friend, A. D. (2010). Terrestrial nitrogen feedbacks may accelerate future climate change. Geophysical Research Letters, 37, L01401. https://doi.org/10.1029/2009GL041345
- Zare, E., Huang, J., Santos, F., & Triantafilis, J. (2015). Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software. Soil Science Society of America Journal, 79, 1729–1740.
- Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Thomas, B. D., Cleland, E. E., Field, C. B., & Mooney, H. A. (2003). Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs, 73, 585–604.
- Zhang, T., Qi, J., Gao, Y., Ouyang, Z., Zeng, S., & Zhao, B. (2015). Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 52, 480–489.