Long-term application of different organic and inorganic fertilizers in no-tillage crops changes the soil microstructural viscoelasticity and shear resistance to transient stresses
Corresponding Author
Amanda Romeiro Alves
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Correspondence
Amanda Romeiro Alves, Soils Department, Universidade Federal de Santa Maria (UFSM), 1000, prédio 42, Cidade Universitária, Camobi, Santa Maria, RS, CEP: 97105-900, Brazil.
Email: [email protected]
Search for more papers by this authorDörthe Holthusen
German Federal Institute of Hydrology, Koblenz, Germany
Search for more papers by this authorCarina Marchezan
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorGustavo Brunetto
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorStephan Peth
Institute of Soil Science, Leibniz University Hannover, Hannover, Germany
Search for more papers by this authorJosé Miguel Reichert
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorCorresponding Author
Amanda Romeiro Alves
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Correspondence
Amanda Romeiro Alves, Soils Department, Universidade Federal de Santa Maria (UFSM), 1000, prédio 42, Cidade Universitária, Camobi, Santa Maria, RS, CEP: 97105-900, Brazil.
Email: [email protected]
Search for more papers by this authorDörthe Holthusen
German Federal Institute of Hydrology, Koblenz, Germany
Search for more papers by this authorCarina Marchezan
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorGustavo Brunetto
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorStephan Peth
Institute of Soil Science, Leibniz University Hannover, Hannover, Germany
Search for more papers by this authorJosé Miguel Reichert
Soils Department, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
Search for more papers by this authorAbstract
The processes involved in deformation, internal strength and stability of soils with long-term application of fertilizers (organic and inorganic sources) remain poorly investigated and hence understood, particularly in agricultural systems under subtropical climatic conditions. We investigated how long-term fertilizer management with organic and inorganic amendments in no-till crops affects the microstructural stability of a sandy Alfisol under oscillatory shear. The study was conducted in southern Brazil on a 17-year completely randomized block experiment with five fertilizer treatments: pig slurry (PS), cattle slurry (CS), pig deep litter (PDL), mineral fertilizer (MF) and control, i.e. unfertilized (CL). Soil samples were collected from two layers (0–5 and 5–15 cm) for physical and chemical analyses and evaluation of soil rheological properties under oscillatory shear at two matric potentials (0 and −10 kPa). Organic matter accumulation in soil provided by the PDL and CS fertilizers resulted in higher soil stability and elasticity under oscillatory shear, especially in the 0–5 cm layer. Conversely, MF and PS enhanced the soil susceptibility towards deformation under transient stresses, mainly in the 0–5 cm layer under saturated conditions. The PDL significantly increased soil shear resistance under low-shear strain conditions. Significant differences ceased under high-shear strain conditions, though PS and MF yielded at significantly lower strains. Hence, under subtropical conditions, long-term application of organic fertilizers with fibrous components promoted soil microstructure strengthening, reducing soil susceptibility to erosive processes and compaction.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abiven, S., Menasseri, S., & Chenu, C. (2009). The effects of organic inputs over time on soil aggregate stability – A literature analysis. Soil Biology and Biochemistry, 41(1), 1–12. https://doi.org/10.1016/J.SOILBIO.2008.09.015
- Aita, C., & Giacomini, S. J. (2003). Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura de solo solteiras e consorciadas. Revista Brasileira de Ciência do Solo, 27(4), 601–612. https://doi.org/10.1590/s0100-06832003000400004
10.1590/S0100-06832003000400004 Google Scholar
- Aita, C., José, S., & Paulo, A. (2007). Nitrificação do nitrogênio amoniacal de dejetos líquidos de suínos em solo sob sistema de plantio direto Nitrification of ammoniacal nitrogen from pig slurry in soil under no-tillage. Pesquisa Agropecuária Brasileira, 42(1), 95–102.
- Alves, A. R. (2023). Structural architecture and functioning of an Alfisol after 17 years of organic fertilization in no-till cropping [Doctoral dissertation, Universidade Federal de Santa Maria]. Manancial – UFSM Digital repository. http://repositorio.ufsm.br/handle/1/30215
- Alves, A. R., Holthusen, D., Reichert, J. M., Sarfaraz, Q., & da Silva, L. S. (2021). Biochar amendment effects on microstructure resistance of a Sandy loam soil under oscillatory stress. Journal of Soil Science and Plant Nutrition, 21(2), 967–977. https://doi.org/10.1007/s42729-021-00414-2
- Barbosa, G. M. C., Oliveira, J. F., Miyazawa, M., Ruiz, D. B., & Filho, J. T. (2015). Aggregation and clay dispersion of an oxisol treated with swine and poultry manures. Soil and Tillage Research, 146, 279–285. https://doi.org/10.1016/j.still.2014.09.022
- Barré, P., & Hallett, P. D. (2009). Rheological stabilization of wet soils by model root and fungal exudates depends on clay mineralogy. European Journal of Soil Science, 60(4), 525–538. https://doi.org/10.1111/j.1365-2389.2009.01151.x
- Batistão, A. C., Holthusen, D., Reichert, J. M., dos Santos, L. A. C., & Campos, M. C. C. (2020). Resilience and microstructural resistance of archaeological dark earths with different soil organic carbon contents in Western Amazonia, Brazil. Geoderma, 363, 114130. https://doi.org/10.1016/J.GEODERMA.2019.114130
- Batistão, A. C., Holthusen, D., Reichert, J. M., & Portela, J. C. (2020). Soil solution composition affects microstructure of tropical saline alluvial soils in semi-arid environment. Soil and Tillage Research, 203, 104662. https://doi.org/10.1016/j.still.2020.104662
- Bertagnoli, B. G. P., Oliveira, J. F., Barbosa, G. M. C., & Colozzi Filho, A. (2020). Poultry litter and liquid swine slurry applications stimulate glomalin, extraradicular mycelium production, and aggregation in soils. Soil and Tillage Research, 202, 104657. https://doi.org/10.1016/j.still.2020.104657
- Blanco-Canqui, H., Ferguson, R. B., Shapiro, C. A., Drijber, R. A., & Walters, D. T. (2014). Does inorganic nitrogen fertilization improve soil aggregation? Insights from two long-term tillage experiments. Journal of Environmental Quality, 43(3), 995–1003. https://doi.org/10.2134/jeq2013.10.0431
- Buchmann, C., & Schaumann, G. E. (2018). The contribution of various organic matter fractions to soil–water interactions and structural stability of an agriculturally cultivated soil. Journal of Plant Nutrition and Soil Science, 181(4), 586–599. https://doi.org/10.1002/jpln.201700437
- Bucka, F. B., Kölbl, A., Uteau, D., Peth, S., & Kögel-Knabner, I. (2019). Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma, 354, 113881. https://doi.org/10.1016/j.geoderma.2019.113881
- Buthelezi, K., & Buthelezi-Dube, N. (2022). Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil. Heliyon, 8(1), e08690. https://doi.org/10.1016/J.HELIYON.2021.E08690
- Comin, J. J., Loss, A., Da Veiga, M., Guardini, R., Schmitt, D. E., Victoria De Oliveira, P. A., Filho, P. B., Couto, R. D. R., Benedet, L., Júnior, V. M., & Brunetto, G. (2013). Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Research, 51(5), 459–470. https://doi.org/10.1071/SR13130
- CQFS-RS/SC. (2016). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina (10a). SBCS – NRS.
- Domingo-Olivé, F., Bosch-Serra, À. D., Yagüe, M. R., Poch, R. M., & Boixadera, J. (2016). Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutrient Cycling in Agroecosystems, 104(1), 39–51. https://doi.org/10.1007/s10705-015-9757-7
- Ebling, É. D., Reichert, J. M., Minella, J. P. G., Holthusen, D., Broetto, T., & Srinivasan, R. (2022). Rainfall event-based surface runoff and erosion in small watersheds under dairy and direct-seeding grain production. Hydrological Processes, 36(9), e14688. https://doi.org/10.1002/hyp.14688
- Embrapa. (2017). Manual de Métodos de análise de solo. In P. C. Teixeira, G. K. Donagemma, A. Fontana, & W. G. Teixeira (Eds.), Embrapa solos ( 3rd ed.). Embrapa.
- Essington, M. E. (2005). Soil and water chemistry: An integrative approach. CRC Press.
- FAO. (2022). Soils for nutrition: State of the art. FAO – Food and Agriculture Organization of the United Nations.
- Favaretto, N., Cherobim, V. F., Silveira, F. M., Timofiecsyk, A., Skalitz, R., Barth, G., Pauletti, V., Dieckow, J., & Vezzani, F. M. (2022). Can application of liquid dairy manure onto no-tillage oxisols reduce runoff, sediment, phosphorus, and nitrogen losses over 9 years of natural rainfall? Geoderma, 405, 115406. https://doi.org/10.1016/j.geoderma.2021.115406
- Ferreira, P. A. A., Ceretta, C. A., Lourenzi, C. R., De Conti, L., Marchezan, C., Girotto, E., Tiecher, T. L., Palermo, N. M., Parent, L.É., & Brunetto, G. (2022). Long-term effects of animal manures on nutrient recovery and soil quality in acid Typic Hapludalf under no-till conditions. Agronomy, 12(2), 243.
- Fu, Y., de Jonge, L. W., Moldrup, P., Paradelo, M., & Arthur, E. (2022). Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma, 425, 116062. https://doi.org/10.1016/j.geoderma.2022.116062
- Ghezzehei, T. A., & Or, D. (2001). Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Science Society of America Journal, 65(3), 624–637.
- Giacomini, S. J., Aita, C., Pozzi Jantalia, C., Urquiaga, S., & Franceschi dos Santos, G. (2009). Imobilização do nitrogênio amoniacal de dejetos líquidos de suínos em plantio direto e preparo reduzido do solo. Revista Brasileira de Ciência do Solo, 33, 41–50.
10.1590/S0100-06832009000100005 Google Scholar
- Guo, L., Wu, G., Li, Y., Li, C., Liu, W., Meng, J., Liu, H., Yu, X., & Jiang, G. (2016). Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in eastern China. Soil and Tillage Research, 156, 140–147. https://doi.org/10.1016/J.STILL.2015.10.010
- Guo, Z., Li, W., Ul Islam, M., Wang, Y., Zhang, Z., & Peng, X. (2022). Nitrogen fertilization degrades soil aggregation by increasing ammonium ions and decreasing biological binding agents on a vertisol after 12 years. Pedosphere, 32(4), 629–636. https://doi.org/10.1016/S1002-0160(21)60091-7
- Guo, Z., Zhang, J., Fan, J., Yang, X., Yi, Y., Han, X., Wang, D., Zhu, P., & Peng, X. (2019). Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment, 660, 1029–1037. https://doi.org/10.1016/j.scitotenv.2019.01.051
- Haynes, R. J., & Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51(2), 123–137. https://doi.org/10.1023/A:1009738307837
- Hillel, D. (1998). Stress, strain, and strength of soil bodies. In Environmental soil physics (pp. 235–255). Academic Press.
- Holthusen, D., Batistão, A. C., & Reichert, J. M. (2020). Amplitude sweep tests to comprehensively characterize soil micromechanics: Brittle and elastic interparticle bonds and their interference with major soil aggregation factors organic matter and water content. Rheologica Acta, 59(8), 545–563. https://doi.org/10.1007/s00397-020-01219-3
- Holthusen, D., Jänicke, M., Peth, S., & Horn, R. (2012). Physical properties of a Luvisol for different long-term fertilization treatments: II. Microscale behavior and its relation to the mesoscale. Journal of Plant Nutrition and Soil Science, 175(1), 14–23. https://doi.org/10.1002/jpln.201100076
- Holthusen, D., Pértile, P., Reichert, J. M., & Horn, R. (2017). Controlled vertical stress in a modified amplitude sweep test (rheometry) for the determination of soil microstructure stability under transient stresses. Geoderma, 295, 129–141. https://doi.org/10.1016/j.geoderma.2017.01.034
- Holthusen, D., Pértile, P., Reichert, J. M., & Horn, R. (2019). Viscoelasticity and shear resistance at the microscale of naturally structured and homogenized subtropical soils under undefined and defined normal stress conditions. Soil and Tillage Research, 191, 282–293. https://doi.org/10.1016/j.still.2019.04.014
- Holthusen, D., Reeb, D., & Horn, R. (2012). Influence of potassium fertilization, water and salt stress, and their interference on rheological soil parameters in planted containers. Soil and Tillage Research, 125, 72–79. https://doi.org/10.1016/j.still.2012.05.003
- Horn, R., Holthusen, D., Dörner, J., Mordhorst, A., & Fleige, H. (2019). Scale-dependent soil strengthening processes – What do we need to know and where to head for a sustainable environment? Soil and Tillage Research, 195, 104388. https://doi.org/10.1016/j.still.2019.104388
- Horn, R., & Peth, S. (2011). Mechanics of unsaturated soils for agricultural applications. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences ( 2nd ed., pp. 1–30). CRC Press.
- Jiang, H., Han, X., Zou, W., Hao, X., & Zhang, B. (2018). Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agriculture, Ecosystems and Environment, 268, 133–143. https://doi.org/10.1016/j.agee.2018.09.007
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
- Liu, Z., & Wang, X. (2019). Manure treatment and utilization in production systems. In F. W. Bazer, G. C. Lamb, & G. Wu (Eds.), Animal agriculture: Sustainability, challenges and innovations (pp. 455–467). Elsevier Inc.
- Loss, A., Ventura, B. S., Müller, V., Gonzatto, R., Battisti, L. F. Z., Lintemani, M. G., Erthal, M. E. C., Vidal, R. F., Scopel, G., Lourenzi, C. R., Brunetto, G., Marchezan, C., Ceretta, C. A., & Comin, J. J. (2021). Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer. Journal of Soil and Water Conservation, 76, 547–557. https://doi.org/10.2489/jswc.2021.00165
10.2489/jswc.2021.00165 Google Scholar
- Maillard, É., & Angers, D. A. (2014). Animal manure application and soil organic carbon stocks: A meta-analysis. Global Change Biology, 20(2), 666–679. https://doi.org/10.1111/gcb.12438
- Marchezan, C., Ferreira, P. A. A., Boitt, G., Palermo, N. M., Thoma, A. L., Vidal, R. F., Scopel, G., Lourenzi, C. R., Ceretta, C. A., & Brunetto, G. (2023). Phosphorus balance in Sandy soil subjected to 12 years of successive applications of animal manure and mineral phosphate fertilizer in subtropical climate. Agriculture, 13(9), 1762. https://doi.org/10.3390/agriculture13091762
- Markgraf, W., & Horn, R. (2009). Rheological investigations on soil micro mechanics: Measuring stiffness degradation and structural stability on a particle scale. In L. P. Gragg & J. M. Cassell (Eds.), Progress in management engineering (pp. 237–278). Nova Science Publishers.
- Markgraf, W., Watts, C. W., Whalley, W. R., Hrkac, T., & Horn, R. (2012). Influence of organic matter on rheological properties of soil. Applied Clay Science, 64, 25–33. https://doi.org/10.1016/j.clay.2011.04.009
- Mezger, T. G. (2020). The rheology handbook ( 5th ed.). Vincentz Network.
10.1515/9783748603702 Google Scholar
- Naveed, M., Moldrup, P., Vogel, H. J., Lamandé, M., Wildenschild, D., Tuller, M., & de Jonge, L. W. (2014). Impact of long-term fertilization practice on soil structure evolution. Geoderma, 217–218, 181–189. https://doi.org/10.1016/j.geoderma.2013.12.001
- Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76(1–3), 319–337. https://doi.org/10.1007/BF02205590
- Pértile, P., Reichert, J. M., Gubiani, P. I., Holthusen, D., & da Costa, A. (2016). Rheological parameters as affected by water tension in subtropical soils. Revista Brasileira de Ciência do Solo, 40, e0150286. https://doi.org/10.1590/18069657rbcs20150286
- Peth, S., Rostek, J., Zink, A., Mordhorst, A., & Horn, R. (2010). Soil testing of dynamic deformation processes of arable soils. Soil & Tillage Research, 106, 317–328. https://doi.org/10.1016/j.still.2009.10.007
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Reichert, J. M., Pellegrini, A., Rodrigues, M. F., Tiecher, T., & dos Santos, D. R. (2019). Impact of tobacco management practices on soil, water and nutrients losses in steeplands with shallow soil. Catena, 183, 104215. https://doi.org/10.1016/j.catena.2019.104215
- Rodrigues, L. A. T., Giacomini, S. J., Aita, C., Lourenzi, C. R., Brunetto, G., Bacca, A., & Ceretta, C. A. (2021). Short- and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma, 386, 114913. https://doi.org/10.1016/j.geoderma.2020.114913
- Santos, H. G., dos Jacomine, P. K. T., Anjos, L. H. C., dos Oliveira, V. A., de Lumbreras, J. F., Coelho, M. R., Almeida, J. A., de Araujo Filho, J. C., de Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos ( 5th ed.). Embrapa.
- Six, J., Feller, C., Denef, K., Ogle, S. M., De Moraes Sa, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. Agronomie, 22(7–8), 755–775. https://doi.org/10.1051/agro:2002043
- Suzuki, L. E. A., Reichert, J. M., Albuquerque, J. A., Reinert, D. J., & Kaiser, D. R. (2015). Dispersion and flocculation of Vertisols, Alfisols and Oxisols in southern Brazil. Geoderma Regional, 5, 64–70. https://doi.org/10.1016/j.geodrs.2015.03.005
10.1016/j.geodrs.2015.03.005 Google Scholar
- Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais ( 2nd ed.). Universidade Federal do Rio Grande do Sul – UFRGS.
- Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.
- USDA. (2014). Keys to soil taxonomy. In Change ( 14th ed.). United States Department of Agriculture – USDA.